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LETTER TO THE EDITOR 

Finite-size scaling studies of 2~ electrons at half-filling 

S T Chuit and Timothy Zimantg 
t BaMl Research Institute, University of Delaware. Newark, DE 19716, USA 
$ Department of Physics and AsImnomy, University of Delaware, Newark, DE 19716, USA 

Received I2 January 1993 

Abstract. Finia-size exact diagonalization of the Hamiltonian for four, eight and 16 e l e m n s  
in a half-filled Landau level under periodic boundary conditions in a rectangular geomeby was 
canied OUL The magnitude of the peak value of the sUuclum factor is found to increase with 
the system size to the power 0.36. consistent with a picme of a quasi-solid discussed by Chi.  
The energy difference of the lowestenergy state of the two diffmnt paniclehole syMnetry 
manifolds d e c m e s  as the system size is increased. suggestive of broken particle-hole symmetry. 

The discovery of the integer and fractional quantized Hall effect (FQKE) has generated much 
excitement recently. The FQHE is believed to come at odddenominator filling factors so 
that the ground state does not possess long-range positional order and a gap exists in its 
excitation specr”. As yet the study of the physics of the ground state at other filling 
factors, such as those with even denominators or at low densities, is still in its infancy. 

and is interpreted as 
being due to a spin effect [I]. Violations of the odd-denominator rule because of different 
physics at half-filling for narrow channels was predicted by Chui [2,3]. This phenomenon 
was subsequently observed by Timp er nl [4]. For U) samples at even denominator filling 
factors such as one-half, Jiang et nl [5 ]  found a dip in the longitudinal resistivity but no 
Hall plateau, very different from that of the conventional FQHE. This was interpreted [6] in  
terms of a quasi-solid wave function with algebraic long-range positional order previously 
considered by Chui er al [7]. This coherent state of intermediate long-range order presents 
new interesting features in its excitation spectrum. The phonon excitations, which were the 
Goldstone modes when the long-range order was completely broken, are no longer gapless 
because the long-range order is only algebraic. Gapless excitations corresponding to the 
Goldstone mode that consist of density fluctuation can still be constructed from this wave 
function, however. The possibility of a ‘quasi-solid‘ phase at half-filling is also suggested 
by variatio~l [7] and renormalization group [9] calculations. The energy of the trial wave 
function is found to be close to that from extmpolations from finite-cluster diagonalization 
studies [8]. 

Wigner [IO] was the first to suggest that for an electron gas at a low enough density, 
the potential energy dominates the kinetic energy and the system becomes a solid. In the 
presence of an extremely strong magnetic field, all the electrons would be coerced into 
having the same kinetic energy of zero-point motion, and only the Coulomb energy would 
remain effective in goveming their distribution in space. The electrons would then assume 
a configuration that would minimize the mutual repulsion, presumably a regular lattice. A 

5 C a n t  address: Laboratoire de Physique Quantique, Universite F’aul Samer, 31062 lbujou&. France. 

The first violation of the odddenominator rule occurs at v = 
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strong magnetic field could, therefore, be expected to facilitate the formation of a crystal 
from an electron fluid. From this simplistic argument, one might conclude that electrons 
always form a solid when only the lowest Landau level is occupied. 

Solids and chargedensity waves (CDWS) [ 111 were amongst the first ideas examined 
for electrons in strong magnetic fields, but were found wanting in the absence of a sizable 
ground state energy in the Hartree-Fock approximation [12]. The next improvement is to 
introduce correlations. In the harmonic approximation, this yields the magnetophonon solid 
wavefunction which has been discussed by Chaplik [ 131 and recently simplified by us [7]. 
One can improve upon this by going to self-consistent magnetophonons [ 141, but a glaring 
defect remains in that exchange effects have not yet been included. For electrons in a 
strong field, because of the U x B force, if we try to increase the correlation between the 
motion of the electrons and keep them apart in one direction, the electrons would come 
closer together on average due to decreased correlation in the other direction. However they 
would be able to lower their energy because exchange effects keep the electrons apart The 
direct Coulomb energy would suffer only a relatively small increase, since the correlations 
were first optimized with respect to this aspect This effect, we think, is the reason why 
fluctuations are so large. At odd denominators, multiparticle exchanges become possible 
with the help of the Bohm-Aharanov (BA) phase factor [15]. At even denominators, the 
BA phase factors act instead to supress large-scale fluctuations. This is the physical reason 
why we believe the state is a quasi-solid. 

Other possible ground states at half-filling have also been proposed. Kuramoto et a1 
[16] have studied a CDW state with long-range order at half-filling in a mean field and 
found that the square lattice is more stable than the triangular (hexagonal) lattice. Fano 
et a1 [SI and Tosatti et af [ 171 have considered a triangular lattice with long-range order 
and its coexistence with hexagonal lattices, and the question of particlehole symmetry. 
Recently Halperin et al 1181 conjectured that the half-filled state is a fluid, also with gapless 
excitations. To clarify the nature of the ground state in a more quantitative fashion, we 
carried out finite-size scaling studies of the half-filled system, and present the results in this 
paper. 

Numerical exact diagonalization studies on finite clusters at half-filling were performed 
by Fano et ai [8] for spherical geometry up to I 2  electrons and Chui [3] and Chakraborty er ai 
[I91 for the rectangular geomeny. Chen and Tosatti [ZO] studied short-range three-particle 
correlations in small systems and found triangular (hexagonal)-type behaviour for U smaller 
(larger) than 1; the short-range order is reduced at U = 4. Because of the possibilities of 
solid formation of different crystal symmetries, it is important that the boundary conditions 
be commensurate with the possible lattice symmetries. For this reason, the rectangular 
geometry seems more appropriate. as it can be made to be commensurate with both the 
triangular (hexagonal) and the rectangular lattices. 

Rectangular boundary conditions may enhance the formation of a solid As the system 
size is increased the influence of the boundary will be decreased. Thus if the system was 
a liquid but stabilized by the boundary condition, its structure factor should not increase 
as the system size is increased. The structure factor that we found increases as the system 
size is increased, indicating that the tendency to form a solid is even stronger. Incidentally, 
numerical calculations with rectangular boundary conditions produced comt ly  the fluid 
state at f filled with a gap. To ascertain the nature of the ground state it is important to 
study the size dependence in samples that are similar in shape to each other. These kinds 
of systematic study have not been carried out 

In this paper we studied samples of four, eight and 16 electrons because of the constraint 
of shape similarity. To understand the nature of the ground state, we focus on its structure 
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factor S(Q) = exp(iQ * r i j ) / N  = 1 +Ei+, exp(iQ r i j ) / N .  The first term in the sum 
is not a function of the system size but can easily mask the size dependence of the second 
term which can be numerically smaller than the first for small systems. For this reason we 
focus on the quantity S ( Q )  - 1. Our results are summarized in figures 1 and 21 

C' I I I I I I I I I I I I 1  I I I I !.,,A 

Figure 1. The peak value of L e  swcum factor as a function of the system &. 

Figure 2. nte smchm factor BS a function of the momentum transfer in UN& of 
2n( l lLx .  l / L +  

In figure I we show the log-log plot of the peak value of S(Q) - 1 as a function of 
system sizes. Also shown is a least-squares straight line fit through the data points. This 
peak value increases in a power law manner as a function of system size with an exponent 
of 0.36. This behaviour, if true in the limit of infinite size, is only consistent with that of a 
quasi-solid. For a fluid, we expect the peak value to remain unchanged or decrease slightly 
whereas for a solid with true long-range order we expect the peak value to increase linearly 
with the system size (the power will then be unity). 

In figure 2 we show the two-dimensional dependence of the structure factor on the 
momentum transfer (ex, QJ for the 16-particle system. The aspect ration L J L ,  for this 
case was chosen to be d / 2  SO that the box size is commensurate with both the triangular 
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and the rectangular symmetries. The peak occurs at either Qx = 0 or Qy = 0. The positions 
of the peaks are the same for all the sample sizes that we looked at. The structure factor 
quickly approaches one as the momentum is increased because S(Q)  - 1 is proportional to 
e ~ p ( - Q ~ / ~ ) .  We now describe our calculation in detail. 

The formalism for the diagonalization calculation is by now straightforward. The basis 
set can be written as pmduct wavefunctions of Landau orbitals given by [21] 

6 j ( ~ )  = expcixjy - ( x  

xj = (2x/Ly)j. 

L, is the width in the y direction. We set the magnetic length 1 = @c/eB)'/' = 1. The 
Hamiltonian in the second quantized form can be written as 

Where the values of A are integrals of the Coulomb potential and the Landau orbitals q5j 

j;. j a ,  j i )  = dT d T ' 6 j ~ ( + ) * 6 j ~ ( T ' ~ ~ j ~ ( T ) 6 j ~ ( T ' ) / l +  - +'I 

and PM is the Madelung energy [22]. We have assumed the particles are confined in a 
rectangle under periodic boundary conditions. An aspect ratio of 0.866 (1.7321) was used 
in most of our calculations for four, 16 (eight) particles so as to be commensurate with 
triangular and rectangular lattices. 

Haldane has emphasized that there is an additional translation symmetry along the x 
axis by an amount proportional to 2x/uLy. We have incorporated this symmetry in our 
calculation. For the 16-particle system, the total number of states is about a million after 
this symmetry is incorporated. 

The Hamiltonian at half-filling possesses particle-hole symmetry. A state of total y 
momentum J = 1 ji is transformed to one with total y momentum (N , (N ,+  1)/2- J mod 
Ns). Only at special momenta is the total y momentum unchanged under a particle-hole 
transformation. We found that the lowestenergy state occurs at these special momenta (for 
example, J = N,/2). At these momenta for an even number of sites the total y momenta also 
remain unchanged under a parity transformation. When these symmetries are incorporated 
the total number of states for 16 particles is of the order of 300000. We have verified our 
program by comparing the outputs for small systems with and without incorporating these 
symmetries. We now describe some details of our 16-particle calculation. 

We represent a configuration by a bit configuration of a 32-bit integer (corresponding 
to 32 sites); the occupancy of a site is respresented by setting a bit. A hashing technique is 
used to speed up the identification of the 3 x 105 allowable site-occupation configurations 
among the possible Z3' bit configurations with the label of that allowable configuration. The 
Hamiltonian connects those configurations that differ from each other by four and only four 
bits. The program is checked for the eight-particle case with short integers (16 bits) against 
previous calculations without these improvements. 

The Hamiltonian matrix is sparse. The number of non-zero matrix elements for each 
column is of the order of 200. We use the Lanczos algorithm with partial reorthogonalization 
for its diagonalization [23]. On an IBM workstation, it takes a day to generate the 
Hamitonian and half a day for the diagonalization, which takes about 20 iterations. The 
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lowst-energy state occurs at J, = L,/412; and positive particlshole and parity eigenvalues. 
Just as in the eight-particle case, 90% of the spectral density of the ground state wave 
function is concentrated in 0.3% of the basis states. 

We tested for broken particle-hole symmetry by examining the energy separation 
between the two particle-hole symmetric manifolds at the same total momenta containg the 
lowestenergy manifold. For the four-particle case, all states possess positive eigenvalues 
under the particlshole transformation. For the eight- and the sixteen-particle cases, the 
energy separations between the manifolds are 0.22 and 0.08, respectively. The energy 
difference decreases as the system size is increased, consistent with the interpretation of a 
broken particlshole symmetry. The ground state energy is equal to -0.4813, -0.4731, 
-0.4676 for four, eight and sixteen particles, quite close to Fano's estimate of -0.4693~0.05. 
In contrast the energy difference between the first excited states within the same symmetry 
manifold is equal to 0.28, 0.19 and 0.18 for four, eight and sixteen particles. 

The structure factor is calculated from its second quantized form 

( ~ e x p [ ( - q ~ / 2  + iqdkl - ~~+~Y)IC~,,,~C~~-~,C~~C~~). 

The two peaks of the structure factor occur at wave vectos Q = (4n/a3'/2,0) and 
Q = (0, b / a )  where a is the 'lattice constant' given by a' = 2j7l2/3'/*. The magnitude 
of the peak of the structure factor along the x and the y directions differs in magnitude for 
the four- and sixteen-particle cases with the same aspect ratio. We think this is a result of 
the asymmetry of the x translation (I /v)  and y translation (continuous) symmetries. The 
asymmetry decreases as the system size is increased It is 50% and 38% for four and sixteen 
part~cles. When the magnitude of the peak is smaller, the width becomes correspondingly 
larger. The peak value in figure 1 is the average of these two peaks. One can also look at 
the rate of growth of the two peaks separately, obtaining exponents of 0.28 and 0.41. We 
next compare our results with those at f filling. 

At 4 filling, the peak structure factor minus one for four and eight particles at aspect 
ratios of 0.866 and 1.7321, respectively are 0.066 and 0.069. a change of 5%. In contrast, 
at f filling, the corresponding S(Q)-I is 0.119 and 0.179, a bigger value and a significant 
increase. (We cannot easily look at the sixteen-particle case at f filling because it is too 
large and the additional particlshole symmetry cannot be incorporated. For eight particles, 
the number of basis states with only translation symmetry incorporated is 103 at filling 
and 3840 at f filling.) 

The systematics of the structure factor is more complicated for the higher-lying manifold 
with a negative charge conjugation eigenvalue. For the sixteen-particle case, the structure 
factor peaks at positions expected of a triangular (hexagonal) lattice but also with unequal 
peak values. For the eight-particle case, the structure factor peaks along the x or the y axis. 

We have also examined the higher-lying manifold with J ,  = 0. The behaviour of the 
structure factor is identical to the above except that the lower-lying manifold now possesses 
negative particlshole symmeny. 

In summary, we have perfomed size dependence studies of the stn~cture of the ground 
state of 2D electrons in a half-filled Landau level. Our results indicate quasi-solid behaviour 
so that the positional order increases, but not as fast as the system size. Even though the 
order is similar to that of a finite-temperature solid, the state is coherent whereas the finite- 
temperature solid is not. Because of this partially broken symmetry, there are excitations 
with and without gaps. Our calculation also indicates that only a small fraction of the basis 
states i s  important. This suggests that the problem is a weak-coupling problem and may be 
amenable to analytic calculations. 
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We thank E Tosatti, who suggested that we look for the size dependence of the energies of 
the two particle-hole symmetric manifolds as an indication of a possible degeneracy. 
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